United Technologies Research Center

Isaac Cohen, Claudio Pinello, Alessandro Pinto, Alison Gotkin

Jun. 18, 2015

United Technologies

Business units

UTC Building & Industrial Systems

Otis

UTC Climate, Controls & Security

Pratt & Whitney

UTC Aerospace Systems

United Technologies

2014 Sales: \$65.1 billion

UTC invested \$4.8B in 2014 on company and customer funded R&D

UTRC... UTC's Innovation Engine

Defining what's next

Define new frontiers...

Advanced manufacturing

Co-develop new technologies...

Solve tough problems...

Surface topology and wear analysis

Next Gen

centrifugal

Measurement science
Digital imaging strain analysis

lubrication

GTF

Failure analysis

Scattering to measure residual stress

Serve as hub for technical interchange...

Leverage global network of innovation...

Monetize UTC intellectual property...

Our People

96% of our technical staff have advanced degrees

xcellence

global diversity...

~ 600 employees representing approximately 40 different countries

More than 400 technical employees; 76% hold Ph.D.s

UTRC Organization

Program Offices

Mark Thompson Otis

Greg Tillman (Acting) **Pratt & Whitney**

Andrzej Banaszuk Sikorsky

Steve Tongue **UTC** Aerospace Systems

Craig Walker UTC Climate. Controls & Security

John Milton-Benoit Manufacturing & Service **Technologies**

David Parekh Vice President, Research, and Director, UTRC

Jim Fritz Director, **Operations**

Departments

Jodi Vecchiarelli **Physical** Sciences

Isaac Cohen **Systems**

Paul Van Slooten (Acting) Thermal & Fluid Sciences

International

Murilo Bonilha **UTRC** China

Stevo Mijanovic **UTRC** Ireland

Senior Fellows

Vlado Blasko

Sergei Burlatsky

Mike Francis Joe Sangiovanni

Om Sharma

Business Services

Gary Linsey Business Development

Phil Podgorski Finance

Sue Gilbert **Human Resources**

Greg Stephenson Law

Source of Funding

Department Capabilities

Physical Sciences.

Applied physics

Advanced materials

Measurement science

Chemistry

Mechanics

Thermal & Fluid Sciences...

Acoustics

Aerodynamics

Combustion

Applied fluid dynamics

Thermal management

Systems...

Cyber physical systems

Dynamical systems and control

Embedded intelligence

Decision support

Power electronics

Ferrite magnets

Physical Sciences Department

Applied Physics

Optical and chemical sensors, thermoelectrics, and NEMS

NEMS-based device

Advanced Materials

Structures and coatings

Otis coated

Composites

Environmental Science Materials Chemistry

Material synthesis, catalysts and computational chemistry

Chemical process development

Computational chemistry

Measurement Science

State-of-the-art analysis

Mechanical behavior

Surface spectroscopy

FIB microscopy Focused Ion Beam

Solid and Surface Mechanics

Structural analysis and material damage modeling

Physics-based manufacturing

Blade after impact

Systems Department

System Dynamics & Optimization

- Uncertainty quantification and propagation
- Multi-scale system modeling
- Mathematics on graphs, computational mathematics

Embedded Systems & Networks

- Software engineering
- Scalable hardware and software architectures
- Communications, wireless and energy harvesting

Building services platform

Wireless communication and controls

Control Systems

- Adaptive, multi-variable and predictive controls
- Control in presence of uncertainty
- Data driven adaptive controls

Model predictive control for HVAC

Cyber Physical Systems

 Formal methods, verification and validation, code synthesis

- Embedded Intelligence
- Advanced planning and reasoning

Power Electronics

- High density converters
- High temperature-high frequency devices

Low REM machine design

REM – rare earth materials

Machine

5-D magnetic bearings

Decision Support & Machine Intelligence

- Data-based models, data mining, machine learning
- Diagnostics, prognostics, PHM
- Sensor fusion

Human machine interaction

Building diagnostics

for gearbox

PHM - prognostics and health management

Thermal & Fluid Sciences Department

Acoustics

Noise and vibration diagnostics, modeling, and control

High fidelity computational modeling

Thermal Fluid Dynamics and Thermal Management

Heat and mass transfer

Combustion

Dynamics and chemistry of reactive, multi-phase flows

Performance and

Fire suppression

Dynamics

Sprays

High speed propulsion

Aerodynamics

Fluid mechanics of gaseous flows

Applied aerodynamics

Computational fluid dynamics

System analysis and optimization

Aero-thermal Testing

Experimental model validation and component performance

Aerodynamics Spray characterization

High and low Mn combustion

UTRC China Capabilities and Research Areas

Thermal and Building Systems

- Thermo-fluid systems dynamic modeling
- Environmentally friendly refrigerants and cycles
- Special State Stat
- Integrated building/HVAC modeling
- Building diagnostics

Mechanical Systems

- Solid mechanics
- Finite element modeling
- Machining modeling
- Supply chain optimization

Fluid Dynamics

- Turbo-machinery design and analysis
- HVAC component optimization
- Building air/reactive flow modeling
- UTCFD applications

Decision and Control Systems

- Video analytics
- Data mining
- Controls
- Embedded systems
- Software engineering

UTRC Ireland

Highly skilled and diverse workforce

Est. 2010 in Cork

Objectives...

Hub for European interactions

Leverage European talent and investments Dublin opportunities in ICT

Support commercial & aerospace UTC BUs

Technical capabilities and Groups

System Modelling & Power Electronics

Controls &

Network of national and EU resources

Insight - Centre for Data Analytics

SFI - Research Centres

DLEFO Lero – Software Engineering Research Centre

Connect - Communication Networks Research Centre

Technical Capabilities

Controls & Decision support

- Model-based control design
- Optimization-based control
- Fault detection and diagnostics
- Data analytics for alarm management
- Data- and physics-based diagnostics
- Thermal system modeling
- Video analytics

Power Electronics

- Hierarchical system modeling and controls
- Model-based power converter design
- Electric motor optimization
- Digital control of converters & drives
- Power quality analysis
- Grid estimation & emulation
- HiL / rapid prototyping

Sensor networks

Formal methods

Model-based design

Embedded systems

Networks & Embedded Systems

EU R&D Framework

Early impact on R&D programs through memberships and networks

UTRC Ireland

Memberships and networks

European
Organisation for
Security

Energy Efficient Buildings Association

Smart Energy Demand Coalition

Smart Cities Stakeholder Platform

Ireland National Contact Points (ICT, Energy, Security, Aerospace, NMP)

UTIO Brussels

Artemis-IA

Impact

EU Legislation

EU Research Strategy

Industry Roadmaps

R&D Programs

Funding Call Texts

Consortium Formation

Key Initiatives

Advanced Manufacturing

Reinventing design space for new material design, process,

manufacturability, logistics, and

life cycle

Advanced Manufacturing

Topology Optimization

Topology Optimized Design Methodology for Additive Manufacturing

Current part design:

Final design:

 uneven stress distribution premature failure

75% reduction in stress •20% reduction in weight

Concept generation

CAD interpretation

Cold Spray

- Superior material properties
- Highest deposition rates
- Multiple material deposition
- Limited to line-of-sight processing
- Lower geometric fidelity

Direct Write

- Potential for wide variety of geometries
- Excellent resolution depending on technique
- Functional materials primary focus
- Multiple material deposition

Filament-based and aerosol jet

The Role of Autonomy

State-of-the-art in autonomy to mission/operational-level capabilities

- Diverse, multi-disciplinary skills
- Culture of collaboration

World class expertise and leading-edge ideas

Carnegie Mellon.

externa

Integration and validation

- Hardware-in-the-loop simulation
- Human machine interaction

HILSIM HMI

Revolutionary products and services with trusted autonomy

Rapid prototyping

- Low cost flight research
- Individual algorithm assessment
- Heterogeneous platforms

Flight test

OPV / UAS

- Optionally piloted vehicle/ unmanned aircraft systems demonstrator
- Rapid software mods
- Validate, verify and certification

Service Technologies Initiative

Analytics/Big Data

 Scalable algorithms and data management

Distributed analytics (cloud, GPU)

Data fusion

- Analytics to Action: Policy Mapping
- Robust scalable architecture
- Integrated Analytics / HMI optimized tool

chain

Interactive machine learninglearning experts' knowledge

Human Machine Interaction / User Experience

- User-centered design
- Adaptive user interfaces
- Augmented reality for field operators

- Secure Software
- Trusted and secure embedded systems
- Trusted Service and Privacy

Analytics

Cyber-Physical Systems Group

- Enabling Predictable Design and Reliable Operation of Intelligent Systems-of-Systems
 - Embedded Intelligence, advanced reasoning
 - Perception and robotics
 - Model-Based Design and Verification: languages, design and analysis tools
 - Security & Privacy
- Key technical activities
 - Requirements Analysis
 - Contract-Based Design
 - Distributed Intelligent Agents
 - Sequential Decision Making
 - Security & Privacy in distributed and cloud-based systems

UTC Complex Systems

Integrated Building Systems

Integrated high-performance building systems

Increase occupant comfort, safety, and security, while reducing energy usage and operating costs

Aerospace

Autonomy

- Heterogeneous systems
- Designed by different organizations
- Operated by different organizations
- Corresponding Human-Machine Integration challenges
- Different key performance indexes and cost points

Communication in Contested Environments

Contract-based development and deployment of communication systems

<u>Phase 1:</u> Language definition for static interfaces; editors; ontology and templates for C2E application; integration with the rest of the development environment; verification and generation of monitors/test bed.

Phase 2: Run-time services for discovery, negotiation and reconfiguration

<u>Phase 3:</u> Language extension for dynamic interfaces (state machines); verification and monitor/test bed generation; Design space exploration tools

Validation and Verification

- Verification: Are we building the system right?
 - Can start when some design items are available
 - Traditionally in full-force when most items are available
- Validation: Are we building the right system?
 - Can start when requirements are forming

 The cost to discover and correct a requirement (or design) problem increases dramatically in later stages of design

Hardware Design

Claudio Pinello, Cong Liu, Eelco Scholte, Alberto Ferrari, "First things first: a case for rigorous requirements analysis", invited panel talk ESWEEK 2013

Model Based Design and Requirements Analysis

From natural language to models

- Model the plant + control structure, enough detail to state requirements precisely, not more.
- Model the requirements as constraints on the control variables
- Resist temptation to model the solution (operational models)
 - Might mask requirements conflicts, might implicitly fill-in missing assumptions, etc...
- Examples:
 - Heating and Cooling shall not be provided simultaneously to the same zone:
 NOT (z2.heated AND z2.cooled)
 - Zone z1 shall never be heated: NOT z1.heated
- Ambiguity: does "heated" include heat from adjacent zones? If so, how many "hops" count? How about "fresh air"?
 - Formalization forces disambiguation

Consistency and Determinism Analysis

Validating the requirements

multiple

- Ask: does there exist at least one actuator solution for each possible input request?
 - No solution → conflicting requirements or insufficient plant redundancy
 - Multiple solutions → possible under-specification
- Leverage Simulink verification frameworks, e.gFormalSpecs Verifier (UTSCE/ALES)

Configurations

no solutions

Design Methods, Architectures, Tools and Algorithms for AIS

AUTONOMOUS AND INTELLIGENT SYSTEMS

Autonomous Intelligent Systems:

From following instructions to achieving goals

- To be useful, intelligent systems need to accommodate high-level declarative objectives
 - "Search Zone A for intruders" vs
 - "Move to (19.23, 89.97); scan-thermal; Move to (19.95, 92.42); detect motion;..."
 - "Direct people to theater exits" vs
 "activate signage XY; if main_hall_crowded, activate signage XZ; dispatch elevator..."
 - "Do my laundry" vs"Pick sock at (2,3,1); Place into basket at (12,3,1), ..."
 - "Deliver supplies to ship XY, while avoiding threats"

Sequential Decision Making: Example

Initial state

Actions (with models of effects):

- Open, close washer
- Move to table, laundry area
- Pick, place clothes/basket
- Locate clothes (vision)

Feasible/optimal sequence?

- Agent needs to deal with uncertainty in
 - Observations: Cannot detect exact number of dirty clothes in a heap,
 - Action effects: Pinch grasp results in picking an unknown number of clothes
- Behavior not prescribed; needs to be <u>computed and executed</u>
- Distributed agents need to exchange knowledge, objectives, and plans. And need to coordinate executions. Need to gracefully update plans when resources and agents are added/removed.

SYSTEM-THEORETIC METHODS FOR SECURE CONTROL OR COMPUTATION

Motivation (I): Secure Control

Stealth Attack: Coordinated manipulation of inputs and measurements

Classic cases: Stuxnet, Water Network in Australia, Tram system in Poland

Design principles to deny existence of/reveal stealth attacks

Motivation (II): Trusted Computation

How to balance:

- 1. Trusted but approximate value
- 2. Possibly Poisoned Cloud Output

Practical Considerations

- Legacy Systems
- Lack of Attacker Models
- Attack Likelihood versus Impact

Guiding Principles...

- UTC and its business units are our primary customers.
- We deliver on our promises yet are willing to take risks on ideas.
- Research is our core business, from discovery to demonstration.
- Our role is to deliver technology options, not new products.
- Technical excellence AND business impact is our objective.
- Agility is our hallmark; the world will continue to change.
- Our people are our primary asset; it is all about talent.

